连续和离散动力系统引论(第二版)(英文) 9787040470093

配送至
$ $ USD 美元

编辑推荐

《连续和离散动力系统引论(第二版)(英文)》从数学的角度初步介绍了定性微分方程和离散动力系统,包括了理论性证明、计算方法和应用。全书分两部分,即微分方程的连续时间和动力系统的离散时间,可分别用于一学期的课程,或两者结合为一年期的课程。微分方程的素材通过任意维数的线性系统介绍了定性的或几何的方法。接下来的几章中平衡性是最重要的特点,其中标量(能量)函数为主要工具,在那里出现了周期轨道,最后还讨论了微分方程的混沌系统。通过例题和定理引进了许多不同的方法。

作者简介

作者:(美国)R·克拉克·罗宾逊(R.Clark Robinson)

目录

Preface
Historical Prologue
Part 1.Systems of Nonlinear Differential Equations
Chapter 1.Geometric Approach to Differential Equations
Chapter 2.Linear Systems
2.1.Fundamental Set of Solutions
Exercises 2.1
2.2.Constant Coefficients: Solutions and Phase Portraits
Exercises 2.2
2.3.Nonhomogeneous Systems: Time—dependent Forcing
Exercises 2.3
2.4.Applications
Exercises 2.4
2.5.Theory and Proofs
Chapter 3.The Flow: Solutions of Nonlinear Equations
3.1.Solutions of Nonlinear Equations
Exercises 3.1
3.2.Numerical Solutions of Differential Equations
Exercises 3.2
3.3.Theory and Proofs
Chapter 4.Phase Portraits with Emphasis on Fixed Points
4.1.Limit Sets
Exercises 4.1
4.2.Stability of Fixed Points
Exercises 4.2
4.3.Scalar Equations
Exercises 4.3
4.4.Two Dimensions and Nullclines
Exercises 4.4
4.5.Linearized Stability of Fixed Points
Exercises 4.5
4.6.Competitive Populations
Exercises 4.6
4.7.Applications
Exercises 4.7
4.8.Theory and Proofs
Chapter 5.Phase Portraits Using Scalar Functions
5.1.Predator—Prey Systems
Exercises 5.1
5.2.Undamped Forces
Exercises 5.2
5.3.Lyapunov Functions for Damped Systems
Exercises 5.3
5.4.Bounding Functions
Exercises 5.4
5.5.Gradient Systems
Exercises 5.5
5.6.Applications
Exercises 5.6
5.7.Theory and Proofs
Chapter 6.Periodic Orbits
6.1.Introduction to Periodic Orbits
Exercises 6.1
6.2.Poincare—Bendixson Theorem
Exercises 6.2
6.3.Self—Excited Oscillator
Exercises 6.3
6.4.Andronov—Hopf Bifurcation
Exercises 6.4
6.5.Homoclinic Bifurcation
Exercises 6.5
6.6.Rate of Change of Volume
Exercises 6.6
6.7.Poincare Map
Exercises 6.7
6.8.Applications
Exercises 6.8
6.9.Theory and Proofs
Chapter 7.Chaotic Attractors
7.1.Attractors
Exercises 7.1
7.2.Chaotic Attractors
Exercise 7.2
7.3.Lorenz System
Exercises 7.3
7.4.Rossler Attractor
Exercises 7.4
7.5.Forced Oscillator
Exercises 7.5
7.6.Lyapunov Exponents
Exercises 7.6
7.7.Test for Chaotic Attractors
Exercises 7.7
7.8.Applications
7.9.Theory and Proofs
Part 2.Iteration of Functions
Chapter 8.Iteration of Functions as Dynamics
8.1.One—Dimensional Maps
8.2.Functions with Several Variables
Chapter 9.Periodic Points of One—Dimensional Maps
9.1.Periodic Points
Exercises 9.1
9.2.Iteration Using the Graph
Exercises 9.2
9.3.Stability of Periodic Points
Exercises 9.3
9.4.Critical Points and Basins
Exercises 9.4
9.5.Bifurcation of Periodic Points
Exercises 9.5
9.6.Conjugacy
Exercises 9.6
9.7.Applications
Exercises 9.7
9.8.Theory and Proofs
Chapter 10.Itineraries for One—Dimensional Maps
10.1.Periodic Points from Transition Graphs
Exercises 10.1
10.2.Topological Transitivity
Exercises 10.2
10.3.Sequences of Symbols
Exercises 10.3
10.4.Sensitive Dependence on Initial Conditions
Exercises 10.4
10.5.Cantor Sets
Exercises 10.5
10.6.Piecewise Expanding Maps and Subshifts
Exercises 10.6
10.7.Applications
Exercises 10.7
10.8.Theory and Proofs
Chapter 11.Invariant Sets for One—Dimensional Maps
11.1.Limit Sets
Exercises 11.1
11.2.Chaotic Attractors
Exercises 11.2
11.3.Lyapunov Exponents
Exercises 11.3
11.4.Invariant Measures
Exercises 11.4
11.5.Applications
11.6.Theory and Proofs
……
Chapter 12.Periodic Points of Higher Dimensional Maps
Chapter 13.Invariant Sets for Higher Dimensional Maps
Chapter 14.Fractals
Appendix A.Background and Terminology
Appendix B.Generic Properties
Bibliography
Index

文摘

版权页:

插图:
ISBN9787040470093
出版社高等教育出版社
作者R·克拉克·罗宾逊 (R. Clark Robinson)
尺寸16