数域的上同调(第2版)(英文) 9787519219673

配送至
$ $ USD 美元

编辑推荐

《数域的上同调(第2版)(英文)》由世界图书出版公司北京公司出版。

作者简介

作者:(德国)J.诺伊基希(J.Neukirch) (德国)A.施密特(A.Schmidt) (德国)K.温伯格(K.Wingberg)

目录

Algebraic Theory
Chapter Ⅰ:Cohomology of Profinite Groups
1.Profinite Spaces and Profinite Groups
2.Defirution of the Cohomology Groups
3.The Exact Cohomology Sequence
4.The Cup—Product
5.Change of the Group G
6.Basic Properties
7.Cohomology of Cyclic Groups
8.Cohomological Triviality
9.Tate Cohomology of Profinite Groups
Chapter Ⅱ:Some Homological Algebra
1.Spectral Sequences
2.Filtered Cochain Complexes
3.Degeneration of Spectral Sequences
4.The Hochschild—Serre Spectral Sequence
5.The Tate Spectral Sequence
6.Derived Functors
7.Continuous Cochain Cohomology
Chapter Ⅲ:Duality Properties of Profinite Groups
1.Duality for Class Formations
2.An Alternative Description of the Reciprocity Homomorphism
3.Cohomological Dimension
4.Dualizing Modules
5.Ptojective pro—c—groups
6.Profinite Groups of scd G=2
7.Poincare Groups
8.Filtrations
9.Generators and Relations
Chapter Ⅳ:Free Products of Profinite Groups
1.Free Products
2.Subgroups of Free Products
3.Generalized Free Products
Chapter Ⅴ:Iwasawa Modules
1.Modules up to Pseudo—Isomorphism
2.Complete Group Rings
3.Iwasawa Modules
4.Homotopy of Modules
5.Homotopy Invariants of Iwasawa Modules
6.Differential Modules and Presentations Arithmetic Theory
Chapter Ⅵ:Galois Cohomology
1.Cohomology of the Additive Group
2.Hilbert's Satz 90
3.The Brauer Group
4.The Milnor K—Groups
5.Dimension of Fields
Chapter Ⅶ:Cohomology of Local Fields
1.Cohomology of the Multiplicative Group
2.The Local Duality Theorem
3.The Local Euler—Poincare Characteristic
4.Galois Module Structure of the Multiplicative Group
5.Explicit Determination of Local Galois Groups
Chapter Ⅷ:Cohomology of Global Fields
1.Cohomology of the Idele Class Group
2.The Connected Component of Ck
3.Restricted Ramification
4.The Global Duality Theorem
5.Local Cohomology of Global Galois Modules
6.Poitou—Tate Duality
7.The Global Euler—Poincare Characteristic
8.Duality for Unramified and Tamely Ramified Extensions
Chapter Ⅸ:The Absolute Galois Group of a Global Field
1.The Hasse Principle
2.The Theorem of Grunwald—Wang
3.Construction of Cohomology Classes
4.Local Galois Groups in a Global Group
5.Solvable Groups as Galois Groups
6.Safarevic's Theorem
Chapter Ⅹ:Restricted Ranufication
1.The Function Field Case
2.First Observations on the Number Field Case
3.Leopoldt's Conjecture
4.Cohomology of Large Number Fields
5.Riemann's Existence Theorem
6.The Relation between 2 and ∞
7.Dimension of Hi(GTS,Z/pZ)
8.The Theorem of Kuz'min
9.Free Product Decomposition of Gs(P)
10.Class Field Towers
11.The Profinite Group Gs
Chapter Ⅺ:Iwasawa Theory of Number Fields
1.The Maximal Abelian Unramified p—Extension of k∞
2.Iwasawa Theory for p—adic Local Fields
3.The Maximal Abelianp—Extension of k∞ Unramified Outside S
4.Iwasawa Theory for Totally Real Fields and CM—Fields
5.Positively Ramified Extensions
6.The Main Conjecture
Chapter Ⅻ:Anabelian Geometry
1.Subgroups of Gk
2.The Neukirch—Uchida Theorem
3.Anabelian Conjectures
Literature
Index

文摘

版权页:

HUPPERrr,B.
(81)Endliche Gruppen I.Springer 1967
IHARA,Y.
(82)How many primes decompose completely in an infinite unramified Galois extension of a global field? J.Math.Soc.Japan 35 (1983) 693—709
IKEDA,M.
(83)Zur Existenz eigentlicher galoisscher Korper beim Einbettungsproblem.Hamb.Abh.24 (1960) 126—131
(84) Completeness of the absolute Galois group of the rational number field.J.reine u.angew.Math.291 (1977) 1—22
ISHANOV, V.V., LUR—E,B.B.,FA DDEEV,D.K .
(85) The Embedding Problem in Galois Theory.Trans.of Math.Monographs 165 AMS Providence 1997
IWASAWA, K.
(86)On solvable extensions of algebraic number fields.Ann.of Math.58 (1953) 548—572
(87)On Galois groups oflocal fields.Trans.AMS 80 (1955) 448—469
(88)On Ze—extensions of algebraic number fields.Ann.of Math.98 (1973) 246—326
(89)On the μ—invariant of Ze—extensions.Conf.on number theory,algebraic geometry,and commutative algebra in honor of Y.Akizuki, Tokyo 1977,1—11
ISBN9787519219673
出版社世界图书出版公司北京公司
作者J.诺伊基希
尺寸16